472 research outputs found

    Diffusion of Competing Innovations: The Effects of Network Structure on the Provision of Healthcare

    Get PDF
    Medical innovations, in the form of new medication or other clinical practices, evolve and spread through health care systems, impacting on the quality and standards of health care provision, which is demonstrably heterogeneous by geography. Our aim is to investigate the potential for the diffusion of innovation to influence health inequality and overall levels of recommended care. We extend existing diffusion of innovation models to produce agent-based simulations that mimic population-wide adoption of new practices by doctors within a network of influence. Using a computational model of network construction in lieu of empirical data about a network, we simulate the diffusion of competing innovations as they enter and proliferate through a state system comprising 24 geo-political regions, 216 facilities and over 77,000 individuals. Results show that stronger clustering within hospitals or geo-political regions is associated with slower adoption amongst smaller and rural facilities. Results of repeated simulation show how the nature of uptake and competition can contribute to low average levels of recommended care within a system that relies on diffusive adoption. We conclude that an increased disparity in adoption rates is associated with high levels of clustering in the network, and the social phenomena of competitive diffusion of innovation potentially contributes to low levels of recommended care.Innovation Diffusion, Scale-Free Networks, Health Policy, Agent-Based Modelling

    Benchmarking for Biomedical Natural Language Processing Tasks with a Domain Specific ALBERT

    Get PDF
    The availability of biomedical text data and advances in natural language processing (NLP) have made new applications in biomedical NLP possible. Language models trained or fine tuned using domain specific corpora can outperform general models, but work to date in biomedical NLP has been limited in terms of corpora and tasks. We present BioALBERT, a domain-specific adaptation of A Lite Bidirectional Encoder Representations from Transformers (ALBERT), trained on biomedical (PubMed and PubMed Central) and clinical (MIMIC-III) corpora and fine tuned for 6 different tasks across 20 benchmark datasets. Experiments show that BioALBERT outperforms the state of the art on named entity recognition (+11.09% BLURB score improvement), relation extraction (+0.80% BLURB score), sentence similarity (+1.05% BLURB score), document classification (+0.62% F1-score), and question answering (+2.83% BLURB score). It represents a new state of the art in 17 out of 20 benchmark datasets. By making BioALBERT models and data available, our aim is to help the biomedical NLP community avoid computational costs of training and establish a new set of baselines for future efforts across a broad range of biomedical NLP tasks

    Benchmarking for Public Health Surveillance tasks on Social Media with a Domain-Specific Pretrained Language Model

    Get PDF
    A user-generated text on social media enables health workers to keep track of information, identify possible outbreaks, forecast disease trends, monitor emergency cases, and ascertain disease awareness and response to official health correspondence. This exchange of health information on social media has been regarded as an attempt to enhance public health surveillance (PHS). Despite its potential, the technology is still in its early stages and is not ready for widespread application. Advancements in pretrained language models (PLMs) have facilitated the development of several domain-specific PLMs and a variety of downstream applications. However, there are no PLMs for social media tasks involving PHS. We present and release PHS-BERT, a transformer-based PLM, to identify tasks related to public health surveillance on social media. We compared and benchmarked the performance of PHS-BERT on 25 datasets from different social medial platforms related to 7 different PHS tasks. Compared with existing PLMs that are mainly evaluated on limited tasks, PHS-BERT achieved state-of-the-art performance on all 25 tested datasets, showing that our PLM is robust and generalizable in the common PHS tasks. By making PHS-BERT available, we aim to facilitate the community to reduce the computational cost and introduce new baselines for future works across various PHS-related tasks.Comment: Accepted @ ACL2022 Workshop: The First Workshop on Efficient Benchmarking in NL

    Associations between exposure to and expression of negative opinions about Human Papillomavirus vaccines on social media: an observational study

    Get PDF
    Background Groups and individuals that seek to negatively influence public opinion about the safety and value of vaccination are active in online and social media and may influence decision making within some communities. Objective We sought to measure whether exposure to negative opinions about human papillomavirus (HPV) vaccines in Twitter communities is associated with the subsequent expression of negative opinions by explicitly measuring potential information exposure over the social structure of Twitter communities. Methods We hypothesized that prior exposure to opinions rejecting the safety or value of HPV vaccines would be associated with an increased risk of posting similar opinions and tested this hypothesis by analyzing temporal sequences of messages posted on Twitter (tweets). The study design was a retrospective analysis of tweets related to HPV vaccines and the social connections between users. Between October 2013 and April 2014, we collected 83,551 English-language tweets that included terms related to HPV vaccines and the 957,865 social connections among 30,621 users posting or reposting the tweets. Tweets were classified as expressing negative or neutral/positive opinions using a machine learning classifier previously trained on a manually labeled sample. Results During the 6-month period, 25.13% (20,994/83,551) of tweets were classified as negative; among the 30,621 users that tweeted about HPV vaccines, 9046 (29.54%) were exposed to a majority of negative tweets. The likelihood of a user posting a negative tweet after exposure to a majority of negative opinions was 37.78% (2780/7361) compared to 10.92% (1234/11,296) for users who were exposed to a majority of positive and neutral tweets corresponding to a relative risk of 3.46 (95% CI 3.25-3.67, P<.001). Conclusions The heterogeneous community structure on Twitter appears to skew the information to which users are exposed in relation to HPV vaccines. We found that among users that tweeted about HPV vaccines, those who were more often exposed to negative opinions were more likely to subsequently post negative opinions. Although this research may be useful for identifying individuals and groups currently at risk of disproportionate exposure to misinformation about HPV vaccines, there is a clear need for studies capable of determining the factors that affect the formation and adoption of beliefs about public health interventions
    corecore